The reaction of electrophilic terminal phosphinidene complexes with benzophenone and fluorenone: the unexpected formation of six- and eight-membered heterocycles

Yoichi Inubushi, Ngoc Hoa Tran Huy, Louis Ricard, François Mathey *
Laboratoire Hétéroéléments et Coordinarian, URA 1499 CNRS, DCPH, Ecole Polytechnique, 91128 Palaiseasu Ceder, Fnasnce

Received 26 July 1996

Abstract

The phenylphosphinidene-pentacarbonyltungsten complex 2, as generated from the appropriate 7 -phosphamonhoramiliexe comaptex 1 . reacts at $60^{\circ} \mathrm{C}$ with benzophenone to give a benzo-annelloted 1 -oxa- 2 -phosphacyclohex-4-ene 2 -oxide as a $1: 1$ anixture of rwo issmers 3a,b. The same phosphinidene complex 2 reacts at $120^{\circ} \mathrm{C}$ with fluorenone. A deoxygenation of fluoremone taices phace leading to the bifluorenylidene A and to an eighi-mermbered $1,2,8$-oxadiphosphocane 2,8 -dioxide 5 . Both compounds 3 and 8 tave been futhy characterized by X-ray crystal structure analysis. The two reactions are interpreted as resultiag from the isizial formation of a $\mathbf{P} \cdots \mathrm{O}$ Lewis adduct between the phosphinidene and the ketone.

Keywords; Phesphinidene; Benzophenone; Fluorenone; Oxadiphosphecane; 1,2-Oxaphosphacyclohexene

1. Introdaction

Whereas nucleophilic terminal phosphinidene complexes display a clear-cut Wittig-type reactivity towards cartonyl derivatives [1,2], i.e. they convent $\mathrm{C}=0$ into $\mathbf{C}=\mathbf{P}$ double bonds, the reactivity of electrophilic terminal phosphinidene complexes towards the same type of compound appears to be almost unpredictable. At least three pathways have been uncovered until now: the $[1+2]$ cycloaddition leading to oxaphosphirane complexes [3], the insertion into an $\alpha-\mathrm{C}-\mathrm{H}$ bond when available [4], and the insertion into the $\mathrm{O}-\mathrm{H}$ bond of the enol tautomers [4]. Since the acidic α-hydrogens play a central role in the reaction of enolizable ketones with terminal phosphinidene complexes, we decided to also investigate the course of the reaction in the absence of such bydrogens. More precisely, we report hereafter on the results of the reactions of the representative terminal phosphinidene complex $\left[\mathrm{PhP} \rightarrow \mathrm{W}(\mathrm{CO})_{5}\right]$, as generated from the corresponding 7-phosphanorbornadiene complex [5,6] with benzophenone and fluorenore.

[^0]
2. The reaction with bearophenone

The catalytic decomposition of the 7 -phospharerbornadiene complex 1 was carried oun at $60^{\circ} \mathrm{C}$ in the presence of an excess of benzophenone:

The monitoring of the crude reaction mixare by ${ }^{31} P$ NMR spectroscopy showed the formation of sevenal products. Among these, the two major ones 3a, b were successfully purified by chromatography. The ${ }^{i 3} \mathrm{C}$ and ${ }^{31}$ P NMR spectra immediately showed that both 3a and 3h were tungsten-free. Besides, the quasi-ideatity of the ${ }^{31} \mathbf{P}$ and mass spectra of both compounds strongly suggested that 3ab was a diastreomeric mixture. Finally, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra also showed that both 3a and 3b

Fig 1. osirip dawing of one molecule of 3 b , as devermined by a single crystal X-ray diffraction study. Ellipsoids are scaled to enclose 50% of the electroa density. Hydrogen atoms are omitted for clarity. Selectrd boud leagths (Á) and angles (deg): P-O(1) 1.586(2), P-O(2) $1.467(2), \mathrm{P}-\mathrm{C}(1) 1.829(3), \mathrm{P}-\mathrm{C}(9) 1.786(3), \mathrm{O}(1)-\mathrm{C}(8) 1.463(3)$. $C(1)-C(2) 1.530(4), C(2)-C(7) 1.400(4), C(7)-C(8) 1.526(4) ; O(1)-$ $\mathrm{P}-\mathrm{O}(2) 115.0(1), \mathrm{O}(1)-\mathrm{P}-\mathrm{C}(1) 103.0(1), \mathrm{O}(1)-\mathrm{P}-\mathrm{C}(9) 102.5(1)$, O(2)-P-C(9) 112.7(1). C(1)-P-C(9) $110.9(1), ~ P-O(1)-C(8)$ 126.6(2), $P-C(1)-C(2) 111.8(2), C(1)-C(2)-C(7) 120.1(2), C(2)-$ $\mathrm{C}(7)-\mathrm{C}(8) 120.6(2), \mathrm{O}(1)-\mathrm{C}(8)-\mathrm{C}(7) 109.0(2)$.
incorporeted an $\mathrm{sp}^{3}-\mathrm{CH}$ group directly bonded to phosphorus.

3a. $\mathrm{CH}: \delta(\mathrm{H})+4.17\left[{ }^{2} J(\mathrm{H}-\mathrm{P})=15.3 \mathrm{~Hz}\right] ; \delta(\mathrm{C})$ $+48.43\left[{ }^{1} J(\mathrm{C}-\mathrm{P})=80.9 \mathrm{~Hz}\right]$.
3b. CH: $\delta(\mathrm{H})+4.40\left[{ }^{2} J(\mathrm{Hi}-\mathrm{P})=30.5 \mathrm{~Hz}\right] ; \delta(\mathrm{C})$ $+50.74\left[^{1} \mathrm{~J}(\mathrm{C}-\mathrm{P})=77.1 \mathrm{~Hz}\right]$.
The final identification of 3a,b came from an X-ray crystal structure analysis of $\mathbf{3} \mathbf{b}$ (Fig. 1). The structure of 36 incorporates a benzo-annellated 1-oxa-2-phospha-cyclohex-4-ene ring. With a $\mathrm{Ph}-\mathrm{P}-\mathrm{C}_{3}-\mathrm{Ph}$ torsion angle of $58.41(0.24)^{\circ}$, 3b displays a cis disposition of the pheny! groups on P and C_{3}, and hence 3 a corresponds to the trans isomer. This is in line with the higher ${ }^{2} J(H-P)$ coupling in 3 b corresponding to a cis disposition of $\mathrm{C}_{3}-\mathrm{H}$ and $\mathrm{P}=\mathrm{O}$ [7]. We propose the following mechanism for the formation of 3 :

The first step involves the formation of an acid-base Lewis adduct between the benzophenone and the phosphinidene. Such an adduct is similar to the ylids obtained in the reaction of phosphinideric complexes with
amines or phosphines [8]. With a bulky substituent at phosphorus, such an adduct can cyclize to give the oxaphosphirane complex observed by Streubel et al. [3]. The formation of this adduct transforms phosphorus into a nucleophilic centre which can attack a second molecule of benzophenone. Then, a cyclization occurs via an electrophilic substitution reaction at the ortho position of one of the phenyl rings of the second molecule of benzophenone. The final decomplexation with isomerisation of the 1 -hydroxyalkylphosphine into the corresponding phosphine oxide is more classical [9].

3. The reaction with fluorenone

The reaction of 2 with fluorenone needs more drastic conditions than the reaction with benzophenone. The condensation was performed in boiling toluene without a catalyst, using a 3 molar excess of fluorenone:

The two main products of the reaction are the bifiuorenylidene 4 (representing a 24% conversion of the fluorenone used) and the 1,2,8-oxadiphosphocane 5 (27% yield on the basis of 1). The identification of 4 was based on its characteristic mass [$m / z \quad 328$ (\mathbf{M}^{+}, $100 \%)$], ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra. The structure of the oxadiphosphocane 5 was established by X-ray crystal structure analysis (Fig. 2). The relative orientation of the two $\mathrm{P}=\mathrm{O}$ double bonds is trans. Even in the crude reaction mixture, the cis-isomer was not detected.

Even if it is difficult to speculate on the mechanism of formation of 5, it clearly appears that 2 has deoxygenated the fluorenone. Such a reaction has some precedent. Tributylphosphine has been shown to reduce fluorenone to give bifluorenylidene [10]. The transient formation of a carbene was postulated. In. tolvene, this carbene is able to abstract hydrogen to give a fluorenyl radical which oligomerizes to give trimeric units. The formation of 5 seems to follow a similar pariway. The ability of 2 to use its lone pair to reduce a carbonyl derivative demonstrates the ambident reactivity of such phosphinidene complexes. This finding corroborates earlier results of the grouf of Streubel on the reactivity

Fig. 2. ortre drawing of one molecule of 3b, as deternined by a single crystal X-ray diffraction stusty. Ellipsoids are scaled to enclose 50% of the electron density. Hydrogen atoms are omitued for claity. Selected bond lengths (A) and angles (deg): $P(1)-O(2) 1.004(2)$, $P(1)-C(1) 1.840(2), \mathbf{O}(2)-P(2) 1.604(2), P(2)-C(9) 1.820(2), C(9)-$ C(8) $1.545(3), \mathrm{C}(8)-\mathrm{C}(3) 1.423(3), \mathrm{C}(2)-\mathrm{C}(3) 1.569(3), \mathrm{C}(1)-\mathrm{C}(2)$ $1.604(3) ; P(1)-O(2)-P(2) \quad 135.5(1), \quad O(2)-P(2)-C(9)$ 103.5219). $P(2)-C(9)-C(8) 109-3(1), C(3)-C(8)-C(9)$ 134.4(2), $C(2)-C(3)-$ $\mathrm{C}(8) 128.8(2), \mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) \mathrm{I} 18.0(2) . \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2) 121.4(1)$.
of similar species towards both electron-rich and elec-tron-poor allynes [I1]. The versatility of these terminal phosphinidene complexes as symthetic reagents in organophosphorus chemistry is thus highlighted again.

4. Experitacatal

All reactions were performed under nitrogen; the solvents were purified, dried and degassed by standard techniques. ${ }^{1} H,{ }^{13} \mathrm{C}$ and ${ }^{31} \mathbf{P}$ NMR spectra were recorded on a Bruker AC 200 SY spectrometer operating at $200.13,50.32$ and 81.01 MHz respectively. All chemical shifts are reported in parts per million downfield from internal TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) and external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (${ }^{31} \mathrm{P}$). Mass spectra (El) were obtained at 70 eV by the direct inlet method.

4.1. Reaction of 2 with benzophenome

A solution of the 7-phosphanorbornadiene complex 1 ($1 \mathrm{~g}, 1.5 \times 10^{-3} \mathrm{~mol}$) and benzophenone ($0.83 \mathrm{~g}, 45 \times$ $10^{-3} \mathrm{~mol}$) in toluene (10 ml) was heated at $60^{\circ} \mathrm{C}$ for 2.5 h with copper(I) chloride (20 mg) as a catalyst. After filtration and evaporation of the solution, the residue was chromstographed on silica gel ($70-230$ mesh Merck) with ether as the eluent: 3m Rf ~ 0.38, 3b $\mathbf{R f} \sim 0.59$.

3m. $0.13 \mathrm{~g}(18 \%) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 29.7 .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 4.17\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{H}-\mathrm{P})=15.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CHPh}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.43\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{P})=\right.$
$80.9 \mathrm{~Hz}, C \mathrm{HPb}), 92.04\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{C}-\mathrm{P})=9.3 \mathrm{~Hz}, \mathrm{CP}_{\mathrm{B}}{ }_{2}\right.$). Mass: $m / z 332\left(\mathrm{M}^{+}-\mathrm{PhPO}_{2}, 78 \%\right)$, 254 (100%).

3b. $0.12 \mathrm{~g}(17 \%) .{ }^{31} \mathrm{P} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}\right): \delta 31.3 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.40\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{H}-\mathrm{P})=305 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{CHPb}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) ; 850.74\left(\mathrm{~d},{ }^{1} \mathrm{~J}(\mathrm{C}-\mathrm{P})=\right.$ $77.1 \mathrm{~Hz},(\mathrm{HPh}), 92.28\left(\mathrm{~d}^{3}{ }^{2} J(\mathrm{C}-\mathrm{P})=8.7 \mathrm{~Hz}, \mathrm{CPh}_{2}\right)$. Mass: $m / z 332\left(\mathrm{M}^{+}-\mathrm{PhPO}_{2}, 56 \%\right), 254$ (100\%).

4.2. Reaction of 2 with fluorenone

A solution of complex $1\left(1.3 \mathrm{~g}, 2 \times 10^{-3} \mathrm{~mol}\right)$ and fluorenone ($1.1 \mathrm{~g}, 6 \times 10^{-3} \mathrm{~mol}$) in tolvene (10 ml) was heated at $120^{\circ} \mathrm{C}$ in a sealed tube for 4 h . After evaporation of the solution, the residue was chromatographed on silica gel with bexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether in various ratios as the eluent. The biffuorenylidene 4 was recovered with hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 7: 3$ (0.24 g).
4. ${ }^{1} \mathrm{H}$ NNR (CDCl_{3}): $\delta 7.27$ (pseudo t 4 4H, $\mathrm{H}_{2,2, x .7}$
 $7.75\left(\mathrm{~d},{ }^{3} J(\mathrm{H}-\mathrm{H})=7.1 \mathrm{~Hz}, 4 \mathrm{H}_{1}, \mathrm{H}_{4, t}, 5,5\right), 8.46$ (d, $\left.{ }^{3} J(\mathrm{H}-\mathrm{H})=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{1 . \mathrm{Y} . \mathrm{g}}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ 119.93, 126.78, 126.86, 129.18 (4s, CH), 138.57 (s, C), 141.09 ($\mathrm{s}, \mathrm{C}_{9}=\mathrm{C}_{\boldsymbol{q}}$), 141.41 (s, C). Mass: $m / z 328$ ($\mathrm{M}^{+}, 100 \%$).

5 was recovered with ether (0.4 g).
5. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 31.21$ and $36.89,{ }^{2} \mathrm{~J}(\mathrm{P}-\mathrm{P})$ $=37 \mathrm{~Hz}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) . \delta 5.70\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{H}-\mathrm{P})=\right.$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{P}-\mathrm{CH}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 854.14\left(\mathrm{~s}, \mathrm{C}_{9}\right.$ in fluorenylidenc), $57.16\left(\mathrm{~d},{ }^{1} \mathrm{JC}-\mathrm{P}\right)=69.7 \mathrm{~Hz}, \mathrm{P}$. CH), $65.76\left(\mathrm{~d},{ }^{1} /(\mathrm{C}-\mathrm{P})=81.7 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}\right.$ fhuorenylidene). Mass: $m / z 756\left(\mathrm{M}^{+}, 6 \%\right), 326$ (100%).

4.3. X-ray strurture determination

Crystals of 3b, $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}^{*} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 5 , $\mathrm{C}_{51} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{P}_{2}^{*} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, were grown from dichloromethanc solutions of the comprounds. Data were collected at $-150 \pm 05^{\circ} \mathrm{C}$ on an Enraf-Nonius CAD-4 diffractometer using Mo Ka radiation ($\lambda=0.71073 \AA$) and a graphite monochromator. The crystal structures were solved and refined using the Enraf-Nonius molen package. Compound 3 W crystallises in space growp $P 2_{1} / n$ (No. 14), $a=16.685(2), b=9.153(1), c=$ $18.905(2) \AA, \beta=110.48(1)^{\circ}, V=2704.6(1.1) \AA^{3}, Z=4$, $d_{\text {ckc }}=1.369 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=3.3 \mathrm{~cm}^{-1}, \quad F(000)=1160$. Compound 5 crystallises in space group P1 (No. 2), $a=10.647(1), b=11.960(1), c=16.835(2) \AA, a=$ $104.21(1)^{\circ}, \beta=102.31(1)^{\circ}, \gamma=95.22(1)^{\circ}, \quad V=$ $2006.81(84) \dot{A}^{3}, \quad Z=2, \quad d_{\text {cat }}=1.393 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mu=$ $2.8 \mathrm{~cm}^{-1}, F(000)=872$. The crystal structures were solved by direct methods. The hydrogen atoms were inciuded as fixed contributions in the final stages of least-squares refinement while using anisotropic temperature factors for all other atoms. A non-Poisson weighting scheme was applied with a p factor equal to 0.08 .

The finsl agreement factors were $R=0.048, R_{w}=$ $0.064, \mathrm{GOF}=1.09$ for 3 b and $R=0.042, R_{w}=0.058$, GOF $=1.08$ for 5 .

Referemes

[1] C.C. Cumainas, R.R. Schrock and W.M. Davis, Angew, Chem, hat Ed Eng!, 32 (1993) 756.
[2] T1. Breen ardd D.W. Steptan, J. Am. Chem. Soc., 117 (1995) 11914.
[3] R. Sturubel. A. Kusenberg, J. Jeske and P.G. Jones, Angew. Chems, Ins. Ed Engl., 33 (1994) 2427.
[4] Y. Inubushi, N.H. Tran Huy and F. Mathey, I. Chem Soc., Chem. Commun., (1996) 1903.
[5] A. Marinetii, F. Mathey, J. Fischer and A. Mitschler, J. Chem. Soc., Chem. Commun., (1982) 667.
[6] A. Marinemi, F. Mathey, J. Fischer and A. Mitschler, J. Am. Chem. Soc., 104 (1982) 4484.
[7] W.G. Bentrude and W.N. Stetzer, in J.G. Verkade and L.D. Quin (eds.), Phosphorws-31 NMR Spectroscopy in Stereochemical Analysis, VCH, Deeffield Beach, FL, 1987, p. 381.
[8] P. Le Floch, A. Marinetti, L. Ricard and F. Mathey, J. Am. Chem. Soc., 112 (1990) 2407.
[9] M. Epstein and S.A. Buckler, Tetrahedron, 18 (1982) 1251.
[10] 1J. Borowitz, M. Anschel and P.D. Readio, J. Org. Chem.. 36 (1971) 553.
[11] A. Ostrowski, J. Jeske, P.G. Jones and R. Streubel, J. Chem Soc., Chem. Commun., (1995) 2507.

[^0]: - Corresponding author.

